
Using Hardware Ray Transforms to Accelerate
Ray/Primitive Intersections for Long, Thin Primitive Types

I. Wald, N. Morrical, S. Zellmann, L. Ma, W. Usher, T. Huang, V. Pascucci

I. INTRODUCTION
We propose and investigate a technique that “tricks”
the AABB-based BVH traversal hardware on Turing into
first doing a hardware-accelerated oriented-bounding
box (OBB) rejection test before switching to software
execution and calling the expensive user intersection
program. We demonstrate that for a variety of
different real-world models this technique results in
speedups of up to 5.9× over the (also hardware-
accelerated) reference BVH, with otherwise identical
intersection programs.

II. OBJECTIVES

III. REALIZING OBB TESTS IV. PERFORMANCE EVALUATION

V. CONCLUSIONS

• Different acceleration structures and traversal
methods for ray tracing are still an active area of
research; of particular interest to this paper is the
Turing architecture.

• It is about accelerating the ray tracing of
predominantly long and thin primitives such as
cylinders, rounded cone stumps, curves, ribbons, etc.

• The ray tracing hardware units on Turing can
already do most of what a hardware OBB test would
require.

• Replacing the primitives with instances of a “better
oriented” unit primitive results in a top-level
acceleration structure (TLAS) whose leaf nodes
(black) look almost the same as in a), but the root
nodes of the BLAS’s they are instantiating (dotted
red and blue rectangles in c) are now the equivalent
of OBBs.

• These primitive types all suffer from the same issue;
namely, that the axis-aligned bounding boxes that
modern ray tracers rely on often fail to tightly bound
these shapes, leading to many costly ray-primitive
intersections that mostly result in misses.

Two input requirements:
• for each of those primitives, an oriented bounding

box(specified through an affine transform of a unit
bounding box) that is guaranteed to cover the
primitive in world space;

• a CUDA intersection program that, given an integer
primitive ID, computes a (world-space) intersection
with a ray and the specified primitive.

Fig. 2. Heat map showing number of clocks required per ray in a model.

Fig. 3. Conceptual illustration of using instance transforms to reduce
number of primitive intersections.

Fig. 4. Illustration of our complete model.

Fig. 5. Three of the models we used for evaluating our model. For
these three models, our method leverages hardware ray transforms
to realize a hardware-accelerated OBB culling test, achieving
speedup of 1.3×, 2.0×, and 2.1×, respectively, over a traditional
(but also hardware-accelerated) AABB-based BVH (both methods
use the same primitive intersection codes). Bottom: heat map of
number of intersection program evaluations for the two methods,
respectively.

Fig. 6. Number of intersection tests performed during OptiX BVH
traversal, both with the AABB-based reference implementation and

with our OBB-based masquerading technique.

• We have presented a method that leverages
existing ray tracing hardware units to realize an
accelerated OBB culling test

• Our approach works by treating the root bounds of
a BLAS as an OBB which we place into a TLAS
through instancing

• Unlike traditional instancing, we do not create
multiple affine copies of the same primitive

Environment: Ubuntu Linux 18.04.3, OptiX 7.0, CUDA 10.1
Hardware: Intel Xeon CPU (8 cores, 2.2 GHz), 128 GB of RAM,
and two NVIDIA Quadro RTX 8000 GPUs

a) c)b) d)

Fig. 1. Illustration of motivation.

灇瑕嵳䫣
CNP20506

翫禹➃끩ꨭ LEI.MA@PKU.EDU.CN

ⴔ碫�㯮⡤♸㬛⛙

